欢迎来到源码之家!

当前位置:

> 源码分享>

使用Python编程来实现Apriori算法的西电数据挖掘作业示例

  • 软件大小: 9.95MB
  • 文件类型: .zip
  • 软件类别: Python
  • 软件语言: 简体中文
  • 更新时间: 2024-05-14
内容介绍
# coding=utf-8
import operator
from math import log
import time
import load_bigcsv as ls
# import load_csv as ls


def createDataSet():
    dataSet = [[1 1 ‘yes‘]
               [1 1 ‘yes‘]
               [1 0 ‘no‘]
               [0 1 ‘no‘]
               [0 1 ‘no‘]]
    labels = [‘no surfaceing‘ ‘flippers‘]
    return dataSet labels

# 计算香农熵


def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for feaVec in dataSet:
        currentLabel = feaVec[-1]
        if currentLabel not in labelCounts:
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key]) / numEntries
        shannonEnt -= prob * log(prob 2)
    return shannonEnt


def splitDataSet(dataSet axis value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis + 1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet


def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1  # 因为数据集的最后一项是标签
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0
    bestFeature = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet i value)
            prob = len(subDataSet) / float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)
        infoGain = baseEntropy - newEntropy
        if infoGain > bestInfoGain:
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature

# 因为我们递归构建决策树是根据属性的消耗进行计算的,所以可能会存在最后属性用完了,但是分类
# 还是没有算完,这时候就会采用多数表决的方式计算节点分类


def majorityCnt(classList):
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] += 1
    return max(classCount)


def createTree(dataSet labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList):  # 类别相同则停止划分
        return classList[0]
    if len(dataSet[0]) == 1:  # 所有特征已经用完
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel: {}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]  # 为了不改变原始列表的内容复制了一下
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet
                                                               bestFeat value) subLabels)
    return myTree


def main():
    # data label = createDataSet()
    data = ls.data2.tolist()
    label = ls.label
    # print(type(data))
    # print(type(label))
    t1 = t

 属性            大小     日期    时间   名称
----------- ---------  ---------- -----  ----
     目录           0  2019-07-23 16:47  seventh_homework\
     目录           0  2018-12-11 23:19  seventh_homework\7_guanlianguice\
     目录           0  2018-12-05 21:42  seventh_homework\7_guanlianguice\Bigmart\
     文件        3474  2018-10-10 23:47  seventh_homework\7_guanlianguice\Bigmart\read.txt
     文件       85268  2018-10-10 23:24  seventh_homework\7_guanlianguice\Bigmart\SampleSubmission_TmnO39y.csv
     文件      527709  2018-10-10 23:18  seventh_homework\7_guanlianguice\Bigmart\Test_u94Q5KV.csv
     文件      869537  2018-10-10 23:18  seventh_homework\7_guanlianguice\Bigmart\Train_UWu5bXk.csv
     目录           0  2018-12-05 21:42  seventh_homework\7_guanlianguice\black_friday\
     文件        2009  2018-10-10 23:39  seventh_homework\7_guanlianguice\black_friday\readme.txt
     文件          29  2018-10-10 23:35  seventh_homework\7_guanlianguice\black_friday\Sample_Submission_Tm9Lura.csv
     文件     9598228  2015-11-20 00:45  seventh_homework\7_guanlianguice\black_friday\test.csv
     文件    25525678  2015-11-20 00:47  seventh_homework\7_guanlianguice\black_friday\train.csv
     文件       18939  2018-12-11 18:15  seventh_homework\7_guanlianguice\daima.docx
     文件        3478  2018-12-11 18:12  seventh_homework\7_guanlianguice\jueceshu.py
     文件        1628  2018-12-11 18:14  seventh_homework\7_guanlianguice\load_bigcsv.py
     文件        1690  2018-12-11 18:08  seventh_homework\7_guanlianguice\load_csv.py
     目录           0  2018-12-11 21:53  seventh_homework\7_guanlianguice\pict\
     文件       80381  2018-12-11 21:01  seventh_homework\7_guanlianguice\pict\bigmart_10data.png
     文件       52375  2018-12-11 21:02  seventh_homework\7_guanlianguice\pict\bigmart_all_data.png
     文件      327607  2018-12-11 16:30  seventh_homework\7_guanlianguice\pict\black_10.png
     文件       34241  2018-12-11 21:03  seventh_homework\7_guanlianguice\pict\black_100.png
     文件       68786  2018-12-11 21:05  seventh_homework\7_guanlianguice\pict\black_1000.png
     文件       88850  2018-12-11 21:04  seventh_homework\7_guanlianguice\pict\black_10000.png
     文件       12070  2018-12-11 21:03  seventh_homework\7_guanlianguice\pict\black关键属性.png
     文件      171499  2018-12-11 21:22  seventh_homework\7_guanlianguice\pict\black处理后数据.png
     文件       11897  2018-12-11 21:00  seventh_homework\7_guanlianguice\pict\Mart关键属性.png
     文件       91050  2018-12-11 16:32  seventh_homework\7_guanlianguice\pict\Screenshot from 2018-12-11 16-32-03.png
     文件       85403  2018-12-11 21:15  seventh_homework\7_guanlianguice\pict\数据1.png
     文件       58939  2018-12-11 21:21  seventh_homework\7_guanlianguice\pict\数据10.png
     文件       79858  2018-12-11 21:17  seventh_homework\7_guanlianguice\pict\数据2.png
     文件       17647  2018-12-11 21:17  seventh_homework\7_guanlianguice\pict\数据34.png
............此处省略14个文件信息
下载地址
下载错误? 【投诉报错】

使用Python编程来实现Apriori算法的西电数据挖掘作业示例

下载声明

☉ 解压密码: www.zzjlb.com。[ 如果不正确 ]请联系站长。
☉ 推荐使用 [ 迅雷] 下载,使用 [ WinRAR v5] 以上版本解压本站软件。
☉ 如果遇到不能下载的情况,请联系站长解决。
☉ 下载本站资源,如果服务器暂不能下载请过一段时间重试。
☉ 如果遇到什么问题,请加本站QQ群提出,我将尽可能解决。
☉ 本站分享的一些商业软件是供学习研究之用,如用于商业用途,请购买正版。
☉ 本站分享的资源来源互联网,版权归原作者所有。